Automated Visual Inspection in the Age of Covid-19

The pandemic has accelerated the move away from manual inspection 

The United States faced a growing labor shortage in manufacturing before the Covid-19 pandemic devastated the nation. While many manufacturers have been deemed essential, many of their employees fear going  back to work until a vaccine is widely available. Unfortunately, medical authorities are predicting that healthy people may not have access to a vaccine until 2022. 

Deloitte’s 2018 manufacturing survey projects that 4.6 million new manufacturing jobs will be needed in the coming decade, but that only about 2.1 million will be filled by  qualified candidates – leaving a shortage of 2.5 positions. The shortage will be even more critical in quality assurance and inspection. These positions require advanced skills and dedication beyond many factory workers. Even with the most skilled inspectors, unacceptable error rates are a fact of life. 

Over the last thirty years, there has been a growing acceptance that human visual inspection is ineffective for technical, psychological, organizational, workplace environment, and social reasons. Drury, Karawanu and Vanderwarker suggest that inspection error rates may range from 20% to 30%.2   Regardless of the dedication, humans have major detection limitations versus machine vision.  The human eye cannot make precise measurements. This is especially true for very tiny items. When comparing two similar objects, the human eye struggles to notice that one is slightly larger or smaller than the other. This issue also applies to size, surface roughness,  and other factors that need to be inspected. The chart below from Nanonets highlights the major limitations in human vision. 3


scope of machine vision with respect to visible spectrum

 

Beyond the limitations of manual/human visual inspection, there is also a cost factor.  Ohno and Shingo  pioneered Lean at Toyota in the 1960s,  advocating building quality into products over adding layers of inspection, some inspection will be needed for the foreseeable future.  According to Glassdoor, quality inspector salaries average about $38,000 per year. Adding 15% for benefits and the need to cover three shifts, manual inspection can total over $130,000 per year. 

Because of the systemic and growing problems with manual visual inspection, automated visual inspection is growing in its acceptance. The chart below demonstrates the diversity of industries applying machine vision to their operations.

Breakdown of Visual Inspection in Industries pie chart

The good news is that Overview’s machine vision technology provides image-based automatic inspection to details and defects for any type of serial production process.  Overview’s automated vision surpasses human vision at both a qualitative and quantitative level because of its speed, accuracy, and repeatability. It easily assesses object details too small to be seen by the human eye and inspect them with much greater reliability than manual methods. Overview uses deep learning algorithms that can accommodate more variability than traditional vision systems and be cost effective on a greater variety of parts and products. Unlike manual inspection, Overview’s solution never takes a break, or takes its eye off the action. It can also inspect parts that are moving at much faster speeds than human inspectors can. 

 

Conclusion

Automated visual inspection can overcome the limitations of human inspection and do it at a lower cost and more quickly  than traditional manual methods. The cost of deep learning and machine vision will continue to drop while its effectiveness grows – Moore’s Law is alive and well.  Given the growing labor shortage that has been aggravated by Covid-19, it makes sense to try Overview’s automated visual inspection solution.  It is easy to get started with a risk-free Proof of Concept in which you can see results in as little as seven weeks.

Refrences

  1. https://www2.deloitte.com/us/en/pages/manufacturing/articles/future-of-manufacturing-skills-gap-study.html
  2. Drury C.G., Sinclair M.A., Human and machine performance in an inspection task. Human Factors, 25, 391–399, 1983.
  3. https://nanonets.com/blog/ai-visual-inspection/

 

Contact:

 

Anthony Tarantino, PhD

Six Sigma Master Black Belt, CPIM, CPM

Adjunct Professor, Santa Clara University

Senior Advisor to Overview

 

tony@overview.com

Leave a Comment

Your email address will not be published. Required fields are marked *